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Abstract

Many critical ecological issues require the analysis of large spatial point data sets – for

example, modelling species distributions, abundance and spread from survey data. But

modelling spatial relationships, especially in large point data sets, presents major

computational challenges. We use a novel Bayesian hierarchical statistical approach,

�spatial predictive process� modelling, to predict the distribution of a major invasive plant

species, Celastrus orbiculatus, in the northeastern USA. The model runs orders of

magnitude faster than traditional geostatistical models on a large data set of c. 4000

points, and performs better than generalized linear models, generalized additive models

and geographically weighted regression in cross-validation. We also use this approach to

model simultaneously the distributions of a set of four major invasive species in a

spatially explicit multivariate model. This multispecies analysis demonstrates that some

pairs of species exhibit negative residual spatial covariation, suggesting potential

competitive interaction or divergent responses to unmeasured factors.
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I N T R O D U C T I O N

Many of the most pressing issues in ecology, theoretically

and practically, involve the analysis of spatial data (Guisan &

Zimmerman 2000; Guisan & Thuiller 2005). Assessing

species abundances and suitable habitat relies on spatial

environmental and species occurrence data (Parmesan et al.

2005; Helmuth et al. 2006; Loarie et al. 2008), as does

evaluating explanations for diversity patterns and gradients

(Palmer 1996; Whittaker et al. 2001; Hawkins et al. 2003).

The ecological mechanisms involved in generating these

patterns (Chesson 2000; Chave et al. 2002) strongly suggest

that the spatial relationships among the data points often

contain information important to making good predic-

tions, inferences and interpretations (Ver Hoef et al. 2001;

Banerjee et al. 2004; Beale et al. 2007; Van Teeffelen &

Ovaskainen 2007). Nonetheless, ecological studies often

neglect to model spatial relationships (Beale et al. 2007),

often for the simple reason that it has remained computa-

tionally prohibitive to run spatially explicit models for large,

point-based data sets (Banerjee et al. 2004). This constraint

is becoming more acute as large (>> 10 000 points) spatial

data sets continue to be produced through large-scale

inventories and remote sensing. In this paper, we present a

novel and straightforward approach, the �spatial predictive

process� model, which dramatically lowers this computa-

tional barrier (Banerjee et al. 2008). This approach makes it

feasible to use spatially explicit models for very large spatial

data sets, as well as to simultaneously model multiple

ecological processes to explore spatial relationships among

them.

A rich spatial statistics literature has developed on models

for georeferenced point data (Ripley 1988; Cressie 1993;

Møller & Waagepetersen 2003; Banerjee et al. 2004; Wack-

ernagel 2006). This work has focused primarily on �point-

referenced� (or �geostatistical� ) models, which use functions

of the spatial relationships among fixed sample points to

draw inferences about spatial autocorrelation and to make

predictions (Dormann et al. 2007). The simplest point-

referenced models assume that the process that generated
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the observed data has a spatial component, and represent

this spatial component through functions of distance

between observation points. The best-known example of

this approach is kriging, which was developed to predict

locations of ore deposits from point-level drill samples

(Banerjee et al. 2004). Ecological point-referenced modelling

has been limited to relatively modest-sized data sets until

recently (Latimer et al. 2006; Bellier et al. 2007; Illian et al.

2007). General-purpose spatial statistical software such as

GeoBUGS (Thomas et al. 2004) becomes overwhelmed by

spatial process models using many more than 100 locations

– a small number compared to the size of many ecological

data sets, and vastly smaller than most climatological and

remotely sensed data sets. To take full advantage of the

growing flood of spatial and spatiotemporal data, we need

models that can incorporate arbitrarily large numbers of

points. It would also be useful to be able to fit multiple

spatial processes simultaneously – for example, when

modelling spatial dependence for multiple time steps in

the spread of disease (LaDeau et al. 2007) or an invading

organism (Wikle 2003), each species in an assemblage (Illian

et al. 2007), or each genetic marker in an assay (Vounatsou

et al. 2000; Yeang & Haussler 2007).

We present a solution to this �many-sites� problem that

rests on the insight that modelled representations of a spatial

process do not have to be tied to the sample point locations

in the data set. Instead, we can anchor the spatial process at

a smaller number of points – i.e. a lower dimensional space

– and use spatial prediction to link this unobserved or

�latent� process back to the sample locations. Models using

this approach are called �predictive process� models, in

reference to the predictive link between the lower dimen-

sional spatial process and the full set of sampling locations

(Banerjee et al. 2008). Using conditional modelling in a

Bayesian hierarchical framework, this method can be

implemented as a fully specified statistical model for even

large data sets, so that modelling assumptions are explicit

and the model quantifies the uncertainty associated with its

predictions.

Ecologists often collect and analyse measurements from

point locations (�point-referenced data�), e.g. plot or sample

locations, specimen collections, weather stations, etc. But

there is currently no standard modelling package that can

perform spatially explicit point-level predictive modelling of

large (much more than c. 1000 points) data sets. The

packages that do perform species distribution modelling are

growing ever-more sophisticated, but most cannot perform

spatially explicit analysis of point data, a potentially serious

shortcoming, given the importance of spatial autocorrela-

tion in much ecological data and the increasing prevalence

of point data (Ver Hoef et al. 2001; Beale et al. 2007).

Methods for spatially explicit analysis of point data, on the

other hand, remain limited to relatively small data sets for

computational reasons. To the extent that existing species

distribution modelling packages include spatially explicit

modelling, they do so via random effects at an areal level,

as in conditional autoregressive models (Besag 1974;

Banerjee et al. 2004), or through empirical, plug-in estimates

of spatial parameters such as the overall variance and

scale of spatial autocorrelation. Moving from point to

areal level modelling sacrifices explicit inference about

correlation structure and scale, as well as the ability to

predict geospatially to new locations. Using plug-in

estimates for spatial parameters, on the other hand, means

that uncertainty in these parameters is not propagated

through the models to the model predictions and

inferences about regression parameters.

We demonstrate the spatial predictive process method

to address a common and important ecological problem,

prediction of species distributions using field survey

records of presence ⁄ absence. We use data for invasive

plant species at geo-referenced locations in the New

England region the northeastern USA, and model at two

nested scales: regional and local landscape. We focus on the

invasive woody vine Celastrus orbiculatus (�Asiatic bitter-

sweet�), which is one of the most prevalent and rapidly

spreading invasive plant species in eastern North America

(Mehrhoff et al. 2003). We use cross-validation to compare

the predictive performance of this spatially explicit model

to three widely used alternative methods for handling

point data: generalized linear models, generalized additive

models (GAMs) and geographically weighted regression

(GWR).

Moving from this larger, regional scale to a nested, local

scale (Fig. 1), we demonstrate how this approach can also be

used to analyse the fine-scale spatial association among

species. Using a multivariate spatial regression to analyse the

local distributions of four invasive plant species, including

C. orbiculatus, within a smaller area (< 100 km2), we quantify

the degree of residual spatial association among these

species. We conducted this study to assess the effects of

present environmental conditions and land use history on

invasive woody plant species that have become widespread

in this heterogeneous landscape.

M A T E R I A L S A N D M E T H O D S

Data

At the regional scale, we used one of the best available data

sets on the presence ⁄ absence of species at point locations –

the IPANE data set, assembled by a combination of

volunteers and professional botanists, which records the

presence and absence of invasive plant species throughout

the New England region of North America (Mehrhoff et al.

2003). This data set currently includes 5000+ data points
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and covers the entire region (c. 180 000 km2; Fig. 1). To

assess the predictive performance of the predictive process

model at this large scale, while eliminating potential

problems of overfitting the modelled data, we held out a

randomly selected subset of 10% of the data, and made

predictions to these points for cross-validation.

5 0 5 Kilometers

Figure 1 Map of the New England region

of North America, with circles denoting

sample locations from the IPANE data set

and presence (filled circles) or absence

(unfilled circles) of Celastrus orbiculatus. The

pullout box shows the Meshomasic Forest

landscape, with all sample locations shown

as asterisks. For context, major roads are

shown as thin, black lines, and state forest

land is shaded grey.
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In the local-scale analysis, we used a smaller but still

spatially rich and complex data set from an intensive,

stratified random sampling of invasive species in central

Connecticut, USA (Fig. 1). At each of 603 geocoded points

in this area, the presence and absence of several invasive

woody plant species were surveyed by direct field observa-

tion. In this local-scale analysis, we focused on the four-

most abundant woody invasive species: the vine C. orbiculatus

and the shrubs Berberis thunbergii (�Japanese barberry� ), Rosa

multiflora (�multiflora rose�) and Euonymus alatus (�winged

burning bush� ).

�Predictive process� – what and why?

In a standard geostatistical or point-process model, the

response variable is related at every sample point to

explanatory variables and to spatially correlated errors.

The errors may also include a component of pure,

uncorrelated error (a �nugget� ), or all error may be assumed

to be spatial. A simple spatially explicit regression model

with a continuous response variable, normally distributed

errors and one explanatory variable can be written as:

yi ¼ xibþ wi ;

where i 2 1; . . . ; nf g indexes sample location, and where the

vector of errors (W) is given a multivariate normal distribu-

tion: W � MVN(0, S) (Congdon 2003; Banerjee et al. 2004).

The covariance matrix S incorporates the spatial association.

If spatial association is assumed to vary only with distance

(i.e. isotropic or independent of direction), then S can be

represented as a function (H ) representing the decay in

correlation between pairs of points with distance multiplied

by an error parameter (r). H can take several forms, the

most common being exponential and Gaussian, and incor-

porating at least one parameter describing how rapidly

correlation declines with distance between points i and j (dij).

For exponential correlation between points i and j,

H ðdijÞ ¼ e�/dij , and so the elements of the covariance matrix

are Rij ¼ re�/dij ; where i; j 2 f1; . . . ; ng:
The problem with fitting even this simple model is that

fitting the model to the data requires obtaining the inverse

of the dense covariance matrix. As the number of points

n increases, S grows with n2, and the number of compu-

tations to invert S scales as n3. The predictive process

approach reduces the dimension of the matrix that has to

be inverted, greatly speeding the computation. Instead of

directly modelling each error wik, we introduce a second

stage to the model, which consists of a spatial process tied

to a smaller number of points m < n, which we call �knots�.
The basic idea behind the predictive process is that a

representative set of locations (�knots�) in the spatial domain

should contain enough information to estimate the under-

lying spatial process while using all the sampling locations

is likely to be computationally wasteful. This idea has also

been used to develop low-rank smoothing splines by

Kamman & Wand (2003). When data locations are fairly

evenly distributed across the domain, it is sensible to select

knots on a uniform grid overlaid on the domain. A set of

knots can be selected from such a grid using a formal

design-based approach to minimize some spatially averaged

predictive variance criterion (see, e.g. Diggle & Lophaven

2006). However, in our regional invasive species data set,

spacing of the locations is highly irregular, generating

substantial areas of sparse observations where we wish to

avoid placing many knots, as they would be �wasted� there.

So a better approach is to use a space-covering design, such

as that developed in Royle & Nychka (1998) implemented in

the R library fields (Fields Development Team 2006). For

our regional model, we used this algorithm to select

different numbers of knots ranging from 50 to 500, fitted

the model for each number and selected a number of knots

(377) where the model comparison scores and cross-

validation performance had approximately levelled out.

The precise number used will depend on the individual

problem, but our experience is that typically 100–400 knots

are sufficient (Banerjee et al. 2008).

In the single-species, regional model, we specify a spatial

process W* that is anchored at these m knots, rather than at

the n sample locations:

W� � MVN 0;R�ð Þ;
where the elements of the covariance matrix S* are, for an

exponential correlation function:

R�ij ¼ rH dij

� �
¼ re�/dij ; where i; j 2 f1; . . . ; ng:

The key step relates this lower-dimensional spatial

process back to the n sample locations. This is done

through prediction (analogous to kriging), where the values

of the n spatial random effects (W) are predicted from the m

values of the predictive process (W*):

W ¼ R0ðW ;W�ÞR
��1W�;

where W is the 1 · n vector of spatial random effects for the

sample locations, and W
* is the 1 · m vector of realizations

of the latent spatial process at the predictive process points.

The matrix S(W, W*) is the cross-covariance matrix between

W and W*, which describes the spatial relationships between

the m knots and the n sample locations. In this matrix, the

i, jth entry is rH dij

� �
; where dij is the distance between the

ith sample location and the jth knot. This predictive step is

fully integrated into the model: the spatial parameters r and

F are fitted in a lower-dimensional subspace along with the

spatial surface W*, then these fitted spatial parameters are

used to interpolate W* to the higher-dimensional space

defined by the sampling locations, where the likelihood is

evaluated. Therefore, the scale and underlying noise
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parameters and their associated uncertainty propagate

through the first (regression) stage of the model, preserving

the advantages of statistically modelling spatial association

(Banerjee et al. 2008; Finley et al. 2008).

The predictive process model is thus a two-stage

hierarchical model. The first stage is the ecological process

model that relates the observed data to the explanatory

variables and the spatial component W. The second stage is

the spatial process model for W*. The levels are linked by

predicting W from W*. In our example of invasive plant

species, presence ⁄ absence (the response variable) is binary,

so we use a probit link to relate it to the environmental

explanatory data. The probit specification introduces a latent

�intensity surface� Z that represents the relative probability

that the species is present. Alternatively we could use a

logistic link, but the probit has computational advantages in

fitting the model, because it allows the regression coeffi-

cients to be sampled using the more efficient Gibbs sampler

rather than Metropolis-Hastings updates (Congdon 2003;

Robert & Casella 2004). So, in sum, the ecological process

part of the model is a standard probit model with spatially

correlated errors:

yi ¼
0 . . . zi � 0

1 . . . zi > 0

���� ; i 2 f1; . . . ng; and

Z ¼ X0bþW

where Z is the vector of the values of the latent probit-scale

intensity surface, X is the matrix of explanatory variables

(including an initial column of ones for an intercept), b is

the vector of regression coefficients and W is the vector of

spatial random effects. Note that this approach can easily be

generalized to predict abundances or number of species

through a cumulative probit link to ordinal abundance

classifications (Congdon 2003).

We can then complete the specification of a Bayesian

hierarchical model by assigning prior distributions to the

parameters. We assigned vague normal distributions to the

regression coefficients (b). We constrained the spatial decay

parameter (u) to a biologically plausible range of values,

because typically it is not possible to identify both the spatial

decay and spatial variance parameters well in spatial models

(Banerjee et al. 2004). We fitted the model using Markov

Chain Monte Carlo (MCMC) methods, which uses repeated

stochastic sampling to characterize the posterior distribu-

tions of the model parameters (Gelman et al. 2004). The

models presented here were implemented as stand-alone

programs in R 2.7 (R Development Core Team 2008), and

code is available on request, but we note that there is now an

R library available for running spatial predictive process

models for Gaussian data (Finley et al. 2007), and extensions

for this library are planned that will enable the analysis of

binary data as here.

Model comparison

To assess whether the spatial predictive process model

provides a predictive advantage over alternative models, we

also fitted three alternative models to the same data and

assessed their performance in cross-validation with held out

data. The simplest model was a logistic regression, in which

spatial relationships were represented as terms for �northing�
and �easting� (i.e. spatial trend), which is an approach still

commonly used (Guisan & Zimmerman 2000). We also

fitted what is currently probably the most widely used kind

of model for species distributions, the GAM, again with

trend terms. Finally, we fitted a GWR to the data. The GWR

uses a least-squares fitting approach to allow the coefficients

for the environmental covariates to vary spatially by

conducting weighted local regressions at each point (Foth-

eringham et al. 2002). We compared the three models using

cross-validation; we summarize the performance using the

area under the receiver operating characteristics curve as an

integrated measure of the discriminative power of the

models without assigning an arbitrary classification thresh-

old (Fielding & Bell 1997; Brotons et al. 2004).

Multivariate spatial models

Ecologists often face questions of whether multiple eco-

logical phenomena are spatially correlated and whether these

correlations remain after taking into account environmental

variation. For example, we could be interested in the

distributions of two potentially interacting species such as

two plant species or two disease organisms (Plotkin et al.

2002; Congdon 2003; Illian et al. 2007). We can use standard

regression and multivariate statistical methods to check for

association among the species occurrences, and between

them and a set of explanatory variables. But we can rarely

capture all spatial pattern through explanatory variables, and

frequently we want to know whether the species distribu-

tions exhibit residual autocorrelation or other spatial

patterns (Bellier et al. 2007; Illian et al. 2007). More

fundamentally, species distributions are generated by eco-

logical mechanisms, including competition, facilitation and

dispersal, which are known to generate spatial clustering and

other non-random occurrence patterns, so we would

generally not expect the �background� environment to

eliminate spatial pattern from ecological data (Ver Hoef

et al. 2001).

In our local-scale, multispecies case study, we know that

all four species are dispersed by many of the same bird

species (especially starlings, themselves a spreading invasive

species), which suggests we might expect some residual

spatial association even after accounting for environmental

variation (Lafleur et al. 2007). Another motivation for

modelling association among the spatial random effects
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surfaces for these species is to detect one of two possible

patterns. If the spatial association were primarily derived

from a common response to unmeasured environmental

variables – say fine distinctions among different edge

habitats – then we would expect that the more ecologically

similar species would exhibit positive cross-correlation. On

the other hand, if competition among similar species were

an important influence in these species� fine-scaled distri-

bution patterns, we would expect the more ecologically

similar species to have negative cross-correlations.

The basic requirement for these kinds of multivariate

models is to fit multiple spatial processes simultaneously,

while linking them with cross-covariance parameters that

represent association among the processes for different

species. The simplest way of structuring this kind of model

is to include a single cross-covariance parameter for each

pair of species; these parameters then summarize the overall

positive or negative association among them. More complex

models could allow these cross-covariance parameters to

vary over time or space (Banerjee et al. 2008). A class of

model that builds this cross-covariance structure is the

�linear model of coregionalization� (Wackernagel 2006).

Here, we implement a linear coregionalization model for the

four invasive plant species. As above in the single-species

model, this multispecies model assumes that spatial associ-

ation is isotropic and can be adequately described by a

simple, smooth decay function. As we have a binary

response variable, we again use a probit link and introduce

latent intensity surfaces for the K = 4 species. The

ecological process model is then the multivariate regression:

zik ¼ lk þ xibk þ wik; where i 2 f1; . . . ; ng
and k 2 f1; . . . ;K g:

The spatial random effects wik are predicted from a latent

process W*, which now consists of five spatial surfaces

related by cross-covariance parameters. In the linear model

of coregionalization, the spatial process is separated into two

components, a spatial correlation matrix (H) and a matrix of

cross-correlations between species (G ).

As in the single species model, the spatial component of

S is implemented at a smaller number of knots (m = 100) in

a second hierarchical stage, then the spatial random effects

in the first stage (the wik) are predicted from this latent

process. For this analysis, as the sampling scheme was more

regular, we used a regular grid of 100 points to anchor the

knots. Because of this reduction in dimension, the cross-

covariance matrix S has dimensions mk · mk. Fitting this

model to our data set is roughly computationally equivalent

to fitting a traditional point-referenced model for a single

species with about 500 data points; not trivial, but clearly

feasible. The critical economy of this approach is that we

could greatly increase the number of observation points n

without affecting the dimensions of S. We update the

cross-covariance parameters using a Hastings step with

corrections for change-in-variables (Green 2003), and

update the other parameters as in the single species model.

R E S U L T S

Regional-scale prediction of invasive species prevalence

The regression analysis shows that even when spatial

autocorrelation is taken into account, the coefficients for

many of the environmental and land-use explanatory

variables still figure prominently in explaining pattern

(Table 1). Celastrus orbiculatus is negatively associated with

canopy closure, and positively associated with warmer

temperatures and the proximity of roads (Table 1). Other

studies have shown that land use is also significantly

associated with the presence ⁄ absence of this species

(Ibanez I., unpublished data). The predicted probability of

occurrence shows high probabilities in the southern part of

the region and along the coast (Fig. 2a), while the spatial

random effect surface has a trough in the northwestern

corner (Vermont near Lake Champlain), which reflects the

absence of the species from the area, despite high predicted

environmental suitability (Fig. 2b).

Cross-validation performance of the spatial predictive

process model was higher than for the logistic regression,

GAM, and the GWR (Table 2).

Local-scale, multispecies model of invasive species
distribution and correlation

The multispecies spatial model provides simultaneous

inference about the individual environmental responses of

Table 1 Regression coefficient estimates for the regional-scale

model of presence ⁄ absence of Celastrus orbiculatus across the New

England Region

Variable

Posterior

mean

0.025

Quantile

0.975

Quantile

Maximal temperature

of warmest month

0.222* 0.092 0.361

Minimal temperature

of coldest month

0.282� )0.010 0.631

Annual precipitation )0.007 )0.251 0.265

Precip seasonality )0.091 )0.180 0.351

Precip of warmest quarter 0.008 )0.395 0.377

Roads within 10 km 0.097� )0.007 0.208

Canopy closure )0.102* )0.155 )0.047

*Significant coefficients (95% credible interval excludes 0).

�Suggestive coefficients (90% credible interval excludes 0).
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the species (Fig. 3), and shows that there are significant

differences in their responses to environmental character-

istics. The species are grouped into two similar pairs with

respect to light levels (canopy closure), with Berberis and

Euonymus exhibiting shade tolerance by responding posi-

tively to some level of canopy closure, while Celastrus and

Rosa show no effect. With respect to land use, all species are

positively associated with abandoned agricultural areas that

have reverted to the forest, and all but Berberis are positively

associated with residential use and recently abandoned

fields. All species respond negatively to intensive manage-

ment (i.e. mowing or plowing) and positively to association

with edge habitat (i.e. decreasing prevalence with increasing

distance to edge habitat) (Fig 3).

The cross-covariance parameters among the species�
random effects surfaces, converted to correlations for ease

of interpretation and presented in Table 3, show significant

negative residual correlations among species. In the case of

Celastrus vs. both Berberis and Rosa, the credible intervals

exclude 0, indicating a significant negative residual correla-

tion between the spatial surfaces of Celastrus and these two

shrubs (random effects surfaces shown in Fig. 4).

D I S C U S S I O N

The performance improvement provided by the predictive

process approach will allow spatially explicit point models to

be easily implemented on standard desktop computers for

many spatial data sets, even those of very large size, so that

computation will no longer pose as high a barrier for

statistical inference for spatially spatial autocorrelated point

data. In the model for C. orbiculatus in the northeastern USA,

the spatial predictive process approach reduces computation

time for a single model-fitting step from c. 30 min to 4 s.

This improvement of more than 2 orders of magnitude

makes it possible to use MCMC methods that would be

impractical for the full covariance matrix (in this case, time

for a typical 10 000-iteration run would increase from

c. 11 h to c. 200 days without the computational savings

from the spatial process model). Improvements would be

even more dramatic for larger data sets. This increase in

speed also makes many extensions possible, including

modelling anisotropy (Banerjee et al. 2008) and modelling

spatial surfaces that evolve through time (cf. Wikle 2003).

At the regional scale, the model provides robust inference

about the environmental relations of the species; for
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Figure 2 Spatial predictive process results for the invasive liana

Celastrus orbiculatus across the New England region: (a) predicted

probability of occurrence, with lighter colours indicating increased

probability of occurrence; (b) spatial random effects, with lighter

colour representing increasingly positive values for the random

effect.

Table 2 Predictive performance in cross-validation of the three

models: logistic regression with northing and easting terms,

generalized additive model with northing and easting terms,

geographically weighted regression and spatial predictive process

model

Model AUC score

Logistic regression 0.665

GAM 0.696

GWR 0.671

Predictive process 0.709

The area under the receiver operating characteristics curve is

provided as an integrated measure of the power of the model to

correctly predict presences and absences.

GAM, generalized additive model; GWR, geographically weighted

regression.
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C. orbiculatus we see that the species is associated with

warmer temperatures and inhibited by high forest canopy

cover, as expected for this edge-adapted species (Herron

et al. 2007; Leicht-Young et al. 2007). The predictive power

of the model is also superior, with cross-validation

performance superior to the logistic regression with trend

variables and to GAMs and GWR. Beyond better predic-

tion, we also obtain a full distribution of the predicted

probabilities, as well as of the regression coefficients. Unlike

the other methods, we obtain inference about the scale of
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Figure 3 Posterior probability densities of

the regression coefficients for the local-scale

model for four invasive species: Berberis

thunbergii (solid black lines); Celastrus orbicul-

atus (dashed black lines); Rosa multiflora (solid

grey lines) and Euonymus alatus (dashed grey

lines). Each panel represents one explana-

tory variable: (a) canopy closure; (b) heavily

managed (1 ⁄ 0); (c) distance from a

vegetation edge; (d) residential land use;

(e) reforested agricultural land; (f) currently

abandoned agricultural land.

(a) (b)

(c) (d)

Figure 4 Results from the multivariate

spatial model for four invasive plant species:

spatial random effects surfaces for (a) Berberis

thunbergii; (b) Celastrus orbiculatus; (c) Rosa

multiflora and (d) Euonymus alatus. Black

squares mark presences; white circles mark

absences.
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residual spatial autocorrelation: the posterior mean of F for

the New England regional model (0.11), corresponds to a

decline in the correlation of 0.5 in c. 6.5 km. Uncertainty

about this parameter is relatively large (CI = 0.04 – 0.22)

meaning we cannot estimate it precisely; nevertheless it is

important to propagate this uncertainty through the model

to obtain more robust predictions.

At the local level, the multispecies model provides

information about the ecological contrasts among the

species. In particular, the regression coefficients for canopy

closure rank the species in terms of their tolerance to shade

(Fig. 3a). Celastrus orbiculatus and Rosa multiflora exhibit the

greatest response to light availability with an open canopy,

while Euonymus alatus and Berberis thunbergii are more shade-

tolerant (Silander & Klepeis 1999), and indeed the latter two

are understory shrubs in their native range in Japan ( J.A.

Silander, Jr., unpublished data). The stronger association of

Celastrus and Rosa with edge habitat (more negative

coefficients for distance to a vegetation edge) also reflects

their preference for a more open canopy. The model also

confirmed that land use influences the local-scale distribu-

tion of these species. As none of the land use coefficients

were negative for any species, and most were positive, our

data support the widespread finding that large stands of

mature forest are relatively resistant to invasion by new plant

species (DeGasperis & Motzkin 2007). Looking more

closely at differences among species reveals some important

differences in the effects of land use on the species. As most

of the landscape has already reverted to forest, Berberis� best

window of opportunity for colonization may have passed,

while the species better adapted to residential development,

Celastrus and Euonymus, are likely to continue to increase in

prevalence (DeGasperis & Motzkin 2007).

The model also reveals substantial spatial variation and

covariation that is not readily explained by observed

environmental factors. When the spatial patterns for

contrasting mechanisms are sufficiently different, we can

use such spatially explicit multivariate models to help assess

the plausibility of alternative mechanisms or unmeasured

environmental variables (e.g. whether spatial clustering and

cross-correlation are more consistent with competition or

with localized recruitment; Bellier et al. 2007; Illian et al.

2007; Van Teeffelen & Ovaskainen 2007). This is challeng-

ing because often the scale parameters in geospatial models

are poorly constrained by the data (Banerjee et al. 2004), and

it can be difficult in a purely statistical model to link

covariance scale with a particular process like the behaviour

of a disperser.

Despite these challenges, here we do gain some insight by

modelling the species� spatial covariation. Where there are

correlations among the species� spatial processes, they tend

to be negative (Table 3). For the climbing and edge-adapted

species C. orbiculatus and R. multiflora, this may indicate

competitive displacement, although we cannot rule out a

role for fine-scale, unmeasured environmental differences.

For species that we would consider a priori ecologically

contrasting, for example C. orbiculatus and the shade-tolerant

understory shrub B. thunbergii, negative residual spatial

correlation suggests unmeasured environmental variation

to which the species are responding in divergent ways, or,

alternatively, pattern retained from contrasting introduction

histories.

C O N C L U S I O N

The spatial predictive process model described here can

greatly speed computation in ecological models for point

data. This approach offers a statistical method for analysing

large point-referenced data sets to learn about environmen-

tal relationships in the presence of spatially correlated errors.

In addition to making regressions robust to spatial

autocorrelation, this approach can help us learn whether

two processes are significantly associated in space, and what

the scale of their spatial autocorrelation is. This is broadly

applicable, as we often want to answer questions such as

whether the prevalence of a particular plant trait or animal

behaviour is spatially associated with environmental factors,

or whether trophically or competitively interacting species

show residual spatial association. The simplicity, power and

many important potential applications make the spatial

predictive process approach a useful addition to ecologists�
toolbox.

A C K N O W L E D G E M E N T S

This research was funded by USDA grant NRI 2005–02217

and NSF grant DEB 008901 and DEB 056320 to JAS, and

by NSF grant DMS 0706870 to SB. We acknowledge

generous assistance and intellectual input from Alan

Gelfand of Duke University, and helpful comments from
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Table 3 Cross-correlations among the latent spatial processes for

the individual species in the multispecies model

Celastrus

orbiculatus

Berberis

thunbergii

Rosa

multiflora

Euonymus

alatus

C. orbiculatus 1 – – –

B. thunbergii )0.37* 1 – –

R. multiflora )0.25* 0.01 1 –

E. alatus 0.02 )0.26* )0.17* 1

Positive values indicate that species are more likely to occur in the

same area than otherwise predicted by the environment and the

spatial structure of each species� own random effects surface, while

negative values indicate the reverse.

*Significant cross-correlation (95% credible interval excludes 0).
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